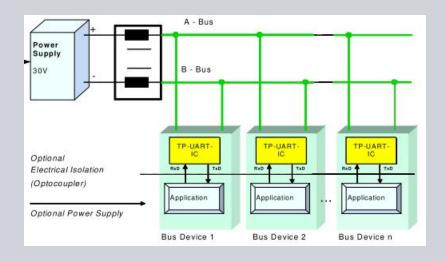


GAMMA B2B

TPUART 2 Technical Features

Contents


Next Generation TP Transceiver

- Key Features
- Block Diagram
- KNX Bus Connection
- 20V Supply
- 5V / 3.3V Supply
- Clock Generator
- Host Interface
- Power-Up / Power-Down
- Application Circuit (Normal Operation)
- Communication Services
- Test boards

TP-UART 2 Next Generation TP Transceiver

- More power
- High efficiency
- Proven high quality
- Smaller size
- Easy application design
- Relieve of the host controller
- Software compatible to TP-UART 1
- Multi-patented solution

Infrastructure & Cities / BT

SIEMENS

Contents

- Next Generation TP Transceiver
- Key Features
- Block Diagram
- KNX Bus Connection
- 20V Supply
- 5V / 3.3V Supply
- Clock Generator
- Host Interface
- Power-Up / Power-Down
- Application Circuit (Normal Operation)
- Communication Services
- Test boards

TP-UART 2 Key Features

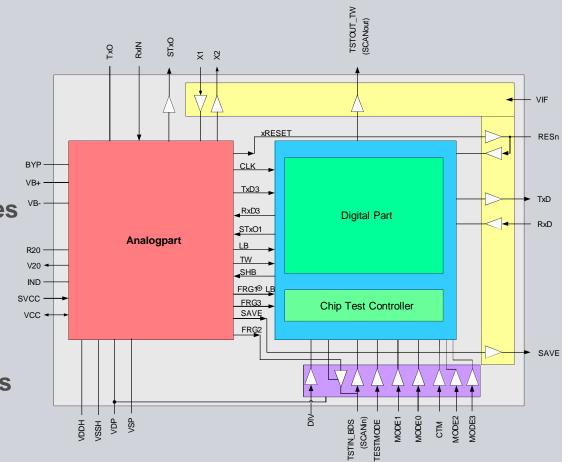
- KNX Interface
 - Certified TP256 KNX transceiver
 - Automatically adjusted current slopes
 - VB+ operation 45 V and absolute maximum rating 50V
 - Maximum input current 66 mA

Power supply

- V_{cc} switchable between 5 V and 3,3 V
- High output power at V_{cc}: 250 mW
- High over all efficiency at V_{cc}
- 20V linear regulator (based on internal supply)
- High output power at V₂₀: 500 mW (typical 20V/25mA)
- V₂₀ with adjustable current limit, short-circuit proof (reactionless)
- Operating Temperature Range -25°C to +85°C
- Package QFN 36 (6*6 mm) with accessible pins

TP-UART 2 Key Features (2)

SIEMENS

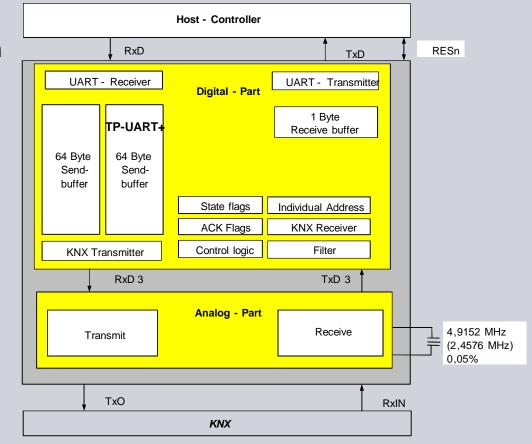

- Host-Controller Interface
 - TP-UART 2
 - 9.6 / 19.2 kBaud
 - I Send buffer
 - TP-UART 2+
 - 19.2 / 115.2 kBaud
 - 2 send buffers
 - 2-wire protocol with software handshake
 - TP-UART 1 compatible
 - based on digital TP-UART 1 designed
 - verified with existing stacks

Contents

- Next Generation TP Transceiver
- Key Features
- Block Diagram
- KNX Bus Connection
- 20V Supply
- 5V / 3.3V Supply
- Clock Generator
- Host Interface
- Power-Up / Power-Down
- Application Circuit (Normal Operation)
- Communication Services
- Test boards

TP-UART 2 Block Diagram – Hardware View

- Analog Part
 - Transceiver like FZE1066
 - Power Supplies
- Digital Part
 - TPUART 1 compatible
 - Optional additional services
- Separate port supply VIF
 - Keeps IOs defined even under operation voltage
 - Stable reset signal for low power microcontrollers (down to 1 V)


TP-UART 2 Block Diagram – Communication View

Compatibility with TPUART 1

- No stack change necessary
 based on TPUART 1 design
- Critical timings
- Checksums, parity
- Immediate acknowledge
- Transmission repetition
- Buffering of send frames

Additional features

- Version information
- Busy Mode
- Individual address filter
- Auto acknowledge
- Optional second send buffer

Contents

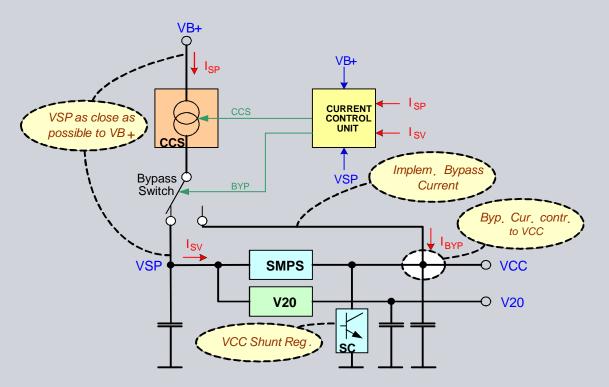
- Next Generation TP Transceiver
- Key Features
- Block Diagram
- KNX Bus Connection
- 20V Supply
- 5V / 3.3V Supply
- Clock Generator
- Host Interface
- Power-Up / Power-Down
- Application Circuit (Normal Operation)
- Communication Services
- Test boards

TP-UART 2 KNX Bus Connection

TP256 KNX transceiver

- Automatically adjusted current slopes
 - Maximum input current typ. 60 mA (54 mA 66 mA)

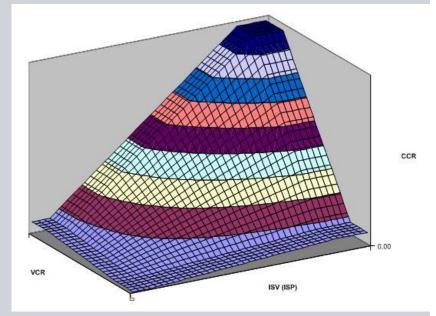
Tested Compatibility and High Quality


- Load changes without side effects
- VB+ operation 45 V and absolute maximum rating 50 V
- Tested in combination with FZE1065, FZE1066, discrete solution and TP-UART 1
- Worst case scenarios tested well beyond certification tests,
 e.g. different positions and number of devices and power supplies in different topologies and different loads

Analog Transceiver

Compatible with FZE1066

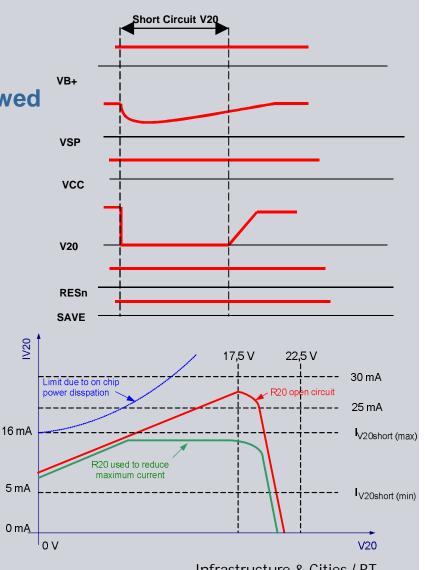
TP-UART 2 KNX Bus Connection


- Optimized for high efficiency
 - High VSP for low losses at current source
 - No energy "lost" to ground \rightarrow used in VCC
 - Additional efficiency improvement with load on V20

TP-UART 2 KNX Bus Connection

Automatic current slew rate control for optimum performance under all conditions

- Optimal current slew rate depending on e.g.
 - VB+ (Bus Voltage)
 - VCR (Voltage Change of VSP)
 - VSP (Internal Buffer Voltage)
 - ISP (Bus Current)
 - ISV (Internal Load Current)
- Relieve application designer
- No knowledge of transmission technology necessary
- Fixed slew rates may cause tricky bugs (dynamics of load and communication)
- Fan-In = max. current @24V
 e.g. about 45 mA with max. load



Contents

- Next Generation TP Transceiver
- Key Features
- Block Diagram
- KNX Bus Connection
- 20V Supply
- 5V / 3.3V Supply
- Clock Generator
- Host Interface
- Power-Up / Power-Down
- Application Circuit (Normal Operation)
- Communication Services
- Test boards

TP-UART 2 V20 Supply

- Short-circuit proof
- Each operating point (continuously) allowed
- No interference of V20 short-circuit with bus or V_{cc} (no side effects)
- Selectable current limitation
- Power dissipation limited below 500 mW
- V20 automatically switched off during soft start
- Minimum value: 17.5 V

Infrastructure & Cities / BT

SIEMENS

Contents

- Next Generation TP Transceiver
- Key Features
- Block Diagram
- KNX Bus Connection
- 20V Supply
- 5V / 3.3V Supply
- Clock Generator
- Host Interface
- Power-Up / Power-Down
- Application Circuit (Normal Operation)
- Communication Services
- Test boards

TP-UART 2 5V / 3.3V Supply

SIEMENS

- Switchable between 5 V and 3.3 V
- High Power up to 50mA @ 5 V / 3.3 V
- High overall efficiency
- Supervised voltage
- No external flyback diode
- Low difference between VSP and 5 V / 3.3 V for long save time

Contents

- Next Generation TP Transceiver
- Key Features
- Block Diagram
- KNX Bus Connection
- 20V Supply
- 5V / 3.3V Supply
- Clock Generator
- Host Interface
- Power-Up / Power-Down
- Application Circuit (Normal Operation)
- Communication Services
- Test boards

TP-UART 2 Clock

SIEMENS

- Crystal without additional capacitors
- Low cost crystal
- Same component as TP-UART 1
- Optional external clock on X1 (and X2 open)
 - No separate crystal
 - Supply from host controller (frequency depends on dividers in host controller)

Contents

- Next Generation TP Transceiver
- Key Features
- Block Diagram
- KNX Bus Connection
- 20V Supply
- 5V / 3.3V Supply
- Clock Generator
- Host Interface
- Power-Up / Power-Down
- Application Circuit (Normal Operation)
- Communication Services
- Test boards

TP-UART 2 Host Interface

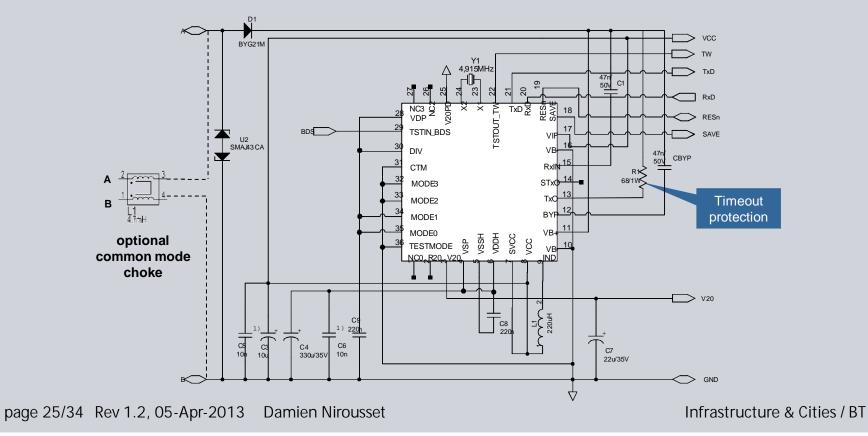
- Host interface signals supplied by VIF
 → signals are valid at very low levels during power down
- Reset, if V_{CC} or V_{SP} too low
- Temperature Warning → disables TxO and reduces current
 → signal and message
 Should not happen under normal conditions
- Save signal on bus power down
 Hold up time (@I_{Vcc} 50mA and I_{V20} 25 mA): typ. 75 ms
- UART receiver baud rate tolerance of max. 3%

Contents

- Next Generation TP Transceiver
- Key Features
- Block Diagram
- KNX Bus Connection
- 20V Supply
- 5V / 3.3V Supply
- Clock Generator
- Host Interface
- Power-Up / Power-Down
- Application Circuit (Normal Operation)
- Communication Services
- Test boards

TP-UART 2 Power-Up / Power-Down

 Soft Start limits current if devices are connected to an operating system to 10 mA

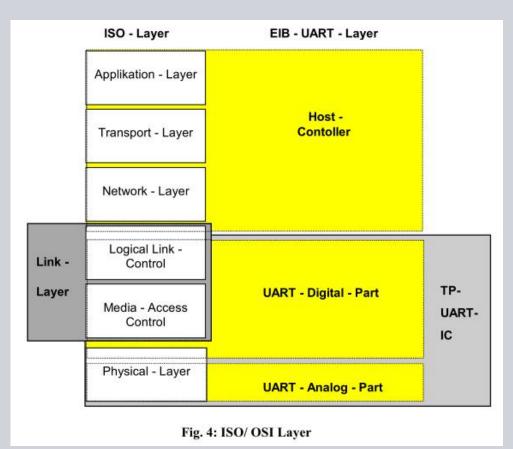

- \rightarrow no power break down
- V_{CC} and V₂₀ are powered up when the buffer capacitor is loaded
 → stable start condition
- Save signal depends on bus voltage only
 - typical signal on-level 16.25 V with minimum 3 ms duration
 → interference protection
- Reset signal depends on V_{CC} and buffer voltage (SMPS input)
 → stable operation condition for host

Contents

- Next Generation TP Transceiver
- Key Features
- Block Diagram
- KNX Bus Connection
- 20V Supply
- 5V / 3.3V Supply
- Clock Generator
- Host Interface
- Power-Up / Power-Down
- Application Circuit (Normal Operation)
- Communication Services
- Test boards

TP-UART 2 Application Circuit (normal operation)

- Proven TP-UART1 design
- EMC robust design
- Most components shared with TP-UART 1
- Buffer capacitor C_{VSP} (C4) can be reduced with lower load



Contents

- Next Generation TP Transceiver
- Key Features
- Block Diagram
- KNX Bus Connection
- 20V Supply
- 5V / 3.3V Supply
- Clock Generator
- Host Interface
- Power-Up / Power-Down
- Application Circuit (Normal Operation)
- Communication Services
- Test boards

TP-UART 2 Communication Services

TP-UART 2 positioning in the communication stack

page 27/34 Rev 1.2, 05-Apr-2013 Damien Nirousset

TP-UART 2 Communication Services

Compatibility with TPUART 1

- No stack change necessary
- Based on TPUART 1 design
- Critical timings
- Checksums, parity
- Immediate acknowledge
- Transmit repetition
- Buffering of send frames

Additional features

- Version information
- Busy Mode
 Individual address filter
- Auto acknowledge
- Optional second transmit buffer

TP-UART 2 Communication Services – New Features Only

SIEMENS

Version information

- U_ProductID service
- delivers product ID and revision number
 - \rightarrow allows flexible stack design

Busy mode

- U_ActivateBusyMode and U_ResetBusyMode services
- automatically handles bus traffic, if the host is not available (e.g. flash erase)
- generates BUSY if the transceiver is addressed
- Timeout after 700ms

Adjustable telegram repetitions

- U_MaxRstCnt service
- sets maximum number of repetitions for BUSY and NAK individually.
- Default after reset: 3 (like TP-UART 1)

TP-UART 2 Communication Services – New Features Only

SIEMENS

Automatic address evaluation and acknowledgement

- U_SetAddress service
- automatically handles individual addressed telegrams
 - address filter for telegrams
 - acknowledgement if addressed
- all group telegrams are acknowledged
- parity and checksum evaluation
- deactivated after reset

Securing transmission by CRC

- U_ActivateCRC service
- CRC16-CCITT over complete received telegram (including checksum)
 → host detects synchronization errors with TP-UART
- deactivated after reset

Contents

- Next Generation TP Transceiver
- Key Features
- Block Diagram
- KNX Bus Connection
- 20V Supply
- 5V / 3.3V Supply
- Clock Generator
- Host Interface
- Power-Up / Power-Down
- Application Circuit (Normal Operation)
- Communication Services
- Test boards

TP-UART 2 Test board

- Evaluation board 1 (product quality)
 - TPUART 2 only (no microcontroller)
 - TPUART 2 in normal mode
 - 5V supply selected
 - V20 available
 - All host interface signals available
- Evaluation board 2 (development board)
 - TP-UART 2 and TP-UART 2+ versions
 - Evaluation board with adjustable parameters

SIEMENS

TP-UART 2 Take away

- More power
- High efficiency
- Proven high quality
- Smaller size
- Easy application design
- Relieve of the host controller
- Software compatible to TP-UART 1
- Multi-patented solution